
Assembly Language on the ZX81

By
Timothy Swenson

An Updated Getting Started Guide

http://home.comcast.net/~tasm/

ftp://ftp.worldofspectrum.org/pub/sinclair/books/

http://www.users.waitrose.com/~thunor/mmcoyzx81/index.html

notepad-plus-
plus.org

line0.asm
line1.asm
main.asm
sysvars.asm
charcode.asm

line0.asm
line1.asm main.asm

sysvars.asm
charcode.asm

LD A,1 ; start with 1
loop ; label used for jump

RST $10 ; PRINT
INC A ; increment A
CP 36 ; stop at 36
JP NZ,loop ; if not 36, then goto/jump to LOOP
RET ; Return to BASIC

10 LET A = 1
20 PRINT CHR$(A)

30 LET A = A + 1
40 IF A <> 36 THEN GOTO 20
50 STOP

main.asm

tasm -80 -b -s main.asm test.p

main.asm test.p
main.asm main.asm

eightyone.exe

test.p
test.p

rst $10

LD A,$08 ; grey square character
CALL PRINT ; print character

LD B,16
LD C,16
CALL PRINTAT ; set cursor to position 16,16

printat.asm.

LD A,$16
CALL hprint

LD A,$CD
CALL hprint
LD A,$FF
CALL hprint
RET

hprint PUSH AF ;store the original value of A for later
AND $F0 ; isolate the first digit
RRA
RRA
RRA
RRA
ADD A,$1C ; add 28 to the character code
CALL PRINT ;
POP AF ; retrieve original value of A
AND $0F ; isolate the second digit
ADD A,$1C ; add 28 to the character code
CALL PRINT
LD A,$00
CALL PRINT ; print a space character
RET

SQUARE .equ $08

LD A,SQUARE
CALL PRINT

.byte
line:

sysvar.asm _H

line

hello.asm:
LD HL,line ;load HL with address of line

pline LD A,(HL) ;load A with a character at HL
CP $ff ;The end of the string?
JP Z,end ;if so, then jump to end
CALL PRINT ;print character
INC HL ;increment HL to get to next character
JP pline ;jump to beginning of loop

end RET ;exit

line: .byte _H,_E,_L,_L,_O,$00,_W,_O,_R,_L,_D,$ff

LD B,10 ; Store Y in B
LD C,10 ; Store X in C
LD HL,($4030) ; Get T-ADDR
PUSH HL ;SAVE T-ADDR
LD A,$98 ;Less than $9E to plot
LD ($4030),A
CALL PLOT

POP HL
LD ($4030),HL ;RESTORE T-ADDR
RET

type.asm:

wait CALL KSCAN ; get a key from the keyboard
LD B,H
LD C,L
LD D,C
INC D
LD A,1 ; If no key entered
JR Z,wait ; then loop
CALL FINDCHAR ;Translate keyboard result to character
LD A,(HL) ; Put results into reg a
CP $18 ; Is character a / (slash)
JR Z,end ; If so, jump to END
CALL PRINT ; Print character
LD BC,$1200 ; Set pause to $1200

delay DEC BC ; Pause routine
LD A,B
OR C
JR NZ,delay

JP wait
end

RET

LD HL,$FFFF ; how long to pause
LD (FRAMES),HL ; store it in FRAMES
CALL PAUSE ;call the PAUSE routine

CALL SCROLL

CALL CLS

CALL CLS
ld hl,(D_FILE) ; Get start of display
ld c,22 ; line counter (22 lines)

LOOP1 inc hl ; get past EOL
ld b,32 ; character counter (32 rows)

LOOP2 ld (HL),$08 ; print grey square character
inc hl ; move to next print position
djnz LOOP2 ; Do it again until B=0
dec c ; next line

JR nz,LOOP1
DONE RET ; exit

CALL CLS
LD HL,(D_FILE) ; Get start of display
LD DE,screen ; Get start of string
inc hl ; get past first EOL

loop LD A,(DE)
CP $FF
JP Z,done
LD (HL),A ; print character stored in A
INC HL ; move to next print position
INC DE ; move to next character in string
JP loop

done RET ; exit

screen:

.byte _H,_E,_L,_L,_O,$00,_W,_O,_R,_L,_D,$FF

matt.west.co.tt/demoscene/zxpaintyone/

x_pos .byte 16
y_pos .byte 16

LD A,(x_pos)
LD B,A
LD A,(y_pos)

LD (x_pos),A
LD (y_pos),A

movechar.asm:

x_pos .byte 16
y_pos .byte 16

START LD A,(X_POS) ;Get starting location of Char
LD B,A
LD A,(Y_POS)
LD C,A
CALL PRINTAT ; set cusor to position 16,16
LD A,$08 ; grey square character
CALL PRINT ; print character

WAIT CALL KEYBOARD ; ROM call to read keyboard
LD B,H ; Get output from HL
LD C,L ; and put into B and C
LD D,C
INC D
LD a,01h
JR Z, WAIT
CALL DECODE ; ROM routine to get character
LD A,(HL) ; Get results of DECODE
CP $21 ; 5 or LEFT key
JP Z, LEFT
CP $22 ; 6 or DOWN key
JP Z, DOWN
CP $23 ; 7 or UP key
JP Z, UP
CP $24 ; 8 or RIGHT key
JP Z, RIGHT
CP $26 ; 0 or zero key (use to Quit)
JP Z, DONE
JP WAIT

LEFT LD A,(x_pos) ; print space at x_pos,y_pos
LD B,A
LD A,(y_pos)
LD C,A
CALL PRINTAT
LD A,00h
CALL PRINT
LD A,(x_pos) ; get x_pos
DEC A ; decrement it
LD (x_pos),A ; store x_pos
JP PAUSE

RIGHT LD A,(x_pos) ; print space at x_pos,y_pos
LD B,A
LD A,(y_pos)
LD C,A
CALL PRINTAT
LD A,00h
CALL PRINT
LD A,(x_pos) ; get x_pos
INC A ; increment it
LD (x_pos),A ; store x_pos
JP PAUSE1

UP LD A,(x_pos) ; print space at x_pos,y_pos
LD B,A
LD A,(y_pos)
LD C,A
CALL PRINTAT
LD A,00h
CALL PRINT
LD A,(y_pos) ; get y_pos
DEC A ; increment it
LD (y_pos),A ; store y_pos
JP PAUSE1

DOWN LD A,(x_pos) ; print space at x_pos,y_pos
LD B,A
LD A,(y_pos)
LD C,A
CALL PRINTAT
LD A,00h
CALL PRINT
LD A,(y_pos) ; get y_pos
INC A ; increment it
LD (y_pos),A ; store y_pos

PAUSE1 LD BC,$1200 ; Set pause to $1200
DELAY DEC BC ; Pause routine

LD A,B
OR C
JR NZ,DELAY ; loop until 0
JP START

DONE
RET ; Return to BASIC

LD B,X
LD C,X

multiply:
LD HL,0 ; zero out HL
LD A,B
CP 0 ; Is B zero?
RET Z ; If so, return and HL=0
LD A,C
CP 0 ; Is C zero?
RET Z ; If so, return and HL=0
LD D,0 ; Zero out D
LD E,C ; load C in E

loop:
ADD HL,DE
DJNZ loop
RET ; result is in HL

divide:
LD A,E
CP 0
RET Z
LD B,0

LD D,0
loop:

SBC HL,DE
INC B
JR NC,loop
DEC B

array: .byte 0,0,0,0,0,0,0,0

LD BC,4
DEC BC
LD HL,(array)
ADD HL,BC
LD A,(HL)
CALL PRINT
RET

array .byte _A,_B,_C,_D,_E,_F,_G

LD B,3 ; X into B
DEC B ; (x-1)
LD C,col

multiply: ; (x-1)*col
LD HL,0 ; zero out HL
LD A,B
CP 0 ; Is B zero?
RET Z ; If so, return and HL=0
LD A,C
CP 0 ; Is C zero?
RET Z ; If so, return and HL=0
LD D,0 ; Zero out D
LD E,C ; load C in E

loop:
ADD HL,DE ; add DE to HL, B times
DJNZ loop

; X * col is now in HL
LD DE,3 ; Y into DE
DEC DE ; (Y-1)
ADD HL,DE ; add result of multiplication and (Y-1)
LD DE,array ; Get start of array
ADD HL,DE ; add offset to array
LD A,(HL)
CALL PRINT
RET

array .byte _A,_B,_C,_D
.byte _E,_F,_G,_H
.byte _I,_J,_K,_L
.byte _M,_N,_O,_P

VERSN: DEFB 0
E_PPC: DEFW 2

KEYBOARD EQU $02BB
DECODE EQU $07BD

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define ORG .ORG
#define EQU .EQU

DEFB .byte

CALL CLS

CALL KEYBOARD
LD B,H
LD C,L
CALL DECODE
LD A,(HL)

CALL FAST

LD BC,$0200
CALL PAUSE

LD B,11
LD C,11
LD HL,(T_ADDR) ;T_ADDR = $4030
PUSH HL ;SAVE T-ADDR
LD A,$98
LD (T_ADDR),A
CALL PLOT
POP HL
LD (T_ADDR),HL ;RESTORE T-ADDR

LD A,XX
CALL PRINT

LD B,$10
LD C,$10
CALL PRINTAT

CALL SCROLL

CALL SLOW

array1d.asm - test of 1 dim array
array2d.asm - test of 2 dim array
divide.asm - test of division
hello.asm - Hello World
hexprt.asm - print hex number
movechar.asm - Keyboard input, PRINT AT
multiply.asm - test of mulitplication
pause.asm - Testing PAUSE call
plot.asm - PLOT and UNPLOT
print.asm - PRINT
printat.asm - PRINT AT
rnd.asm - Simple random number generator
screen1.asm - Write directly to screen
screen2.asm - Write directly to screen with string
scroll.asm - Testing SCROLL call
type.asm - Keyboard input

