Assembly Language on the ZX81

An Updated Getting Started Guide

LD (keyboard wvar),A

9 loop CALL GkeyP
SUB 51D ; Adjust '"l'..."Z" to be in the range 0
JR €, loop Checl

CP

JR HC, loop
LD E.A

INC &

LD D,

POP HL

PUSH HL
ADD HL,DE
ADD HL,DE
LD E, (HL)

Timothy Swenson

@ Ereative
ommons

C OMMO NS)
Attribution-NonCommercial-ShareAlike 2.0
You are free:
- to copy, distribute, display, and perform the work
- to make derivative works
Under the following conditions:
- Attribution You must give the original author credit.
- Noncommercial You may not use this work for commercial purposes.
- Share Alike If you alter, transform, or build upon this work, you may
distribute the resulting work only under a license identical
to this one.

For any reuse or distribution, you must make clear to others the license terms of this work. Any of these
conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are
in no way affected by the above.

This paper will discuss the process of programming in Z80 assembly language on the ZX81, using a MS
Windows based system. The use of a ZX81 emulator, a cross compiler, and editing tools make this process
easier, faster, and smoother than doing it natively on the ZX81. This paper is not designed to teach the syntax
of assembly language. Since we are 30 years removed from the release of the ZX81 and the publication of
assembly language books for the ZX81, this paper covers the changes that have taken place in that time.

Introduction

Back in November, 1981, I purchased my first computer, a Sinclair ZX81. I saw an ad in Popular Science
magazine advertizing the ZX81 for $150 and 16K memory pack for $100. The computer arrived via mail the
day before Thanksgiving. After some learning curves, [was writing programs in BASIC. About 6 months, |
decided to learn assembly language programming (also known as machine code). I purchased "Machine
Language Programming Made Simple for your Sinclair ZX80/ZX81" and was totally lost. The next book,
"Mastering Machine Code on your ZX81" by Toni Baker, was much better and provided a lot more runnable
examples. I bought an assembler for the ZX81, but I could not get it to work, so I learned to hand assemble
the opcodes to hex, and poke those into REM statements. I did learn to write a number of short programs.

Eventually I moved onto the TS-2068, and the QL, where I stayed for a number of years. I tried to learn
68000 assembly for the QL, but I could not get the hang of it. It has been more than 3 years since I've
touched a Sinclair computer, including emulators. 1've spent my time doing other hobbies, from photography
to local history. I felt like I needed to get back to some programming. I did not have the time for anything
long and involved, so I thought that ZX81 assembly would be a good fit.

Having tinkered with a number of emulators for different systems, I knew that I did not want to break out a
real ZX81 and set it up, so I planned to use a ZX81 emulator. Having forgotten how to type on the ZX81
keyboard, I did not want to use only the emulator, but I needed some cross assembler that I could run under
Windows XP and load the binary into the ZX81 emulator in binary format. Luckily, I found all that [needed
with a few good Google searches.

My goal was to write programs in 100% assembly. I did not want to write some routines that could be called
from BASIC. T already know how to program in BASIC. I did not want to use any tools that required
loading the system above RAMTOP and then loading my own program. [wanted tools or libraries, in source,
that could be easily added to my assembly program, and compiled in one go.

I'm not an expert in assembly programming, but when I was looking for information to get me started, did not
find a good tutorial for what I needed. As I discovered what works and what does not work, I documented it
for my own edification and decided to make that documentation available so that others will not have to re-
invent the wheel. I've found that a good way to learn a subject is to document it.

Not all of the code contained herein is my own code. Some I found on the Web, some I found in books, and
some I did figure out myself.

Part 1 - Things that you will need

The Emulator

Eightyone is a Windows based ZX81 emulator, written by Michael D. Wynne, that will also emulate a
number of other Sinclair and Sinclair-like systems, including the ZX80, Jupiter Ace, Spectrum, Timex
Sinclair 2068, and a couple ZX81 clones. It also supports a number of different HI-RES modes on the ZX8]1.
The program is Open Source and the source code is down-loadable if you want it. There is not much of a
manual, but the menus are fairly self explanatory. With some tinkering around, I was able to get it to work
for me. One thing I noticed with EightyOne, one difference between the settings on the ZX81 and T/S 1000
modes is that the T/S 1000 has a setting called NTSC set to ON. With this set to ON, .p files that are
supposed to autorun will not autorun. I just use the ZX81 machine setting and it works fine. With the
emulator running on a PC, I really don't if the NTSC setting is important. It might change FRAMES from
50/sec to 60/sec.

EightyOne is available from: www.chuntey.com or www.aptanet.org/eightyone

The Cross Compiler

The Telemark Cross Assembler (TASM) is a MS-DOS-based cross assembler that supports a number of
CPU's including the Z80. It is written by Thomas N. Anderson, with its last update in 2002. It is a shareware
application, so if you are going to use it a lot, then you are supposed to register it.

Through a ZX81 message board (http://www.rwapservices.co.uk/ZX80 ZX81/forums/), I found a download
(temper.zip) that included TASM and a number of TASM templates that are used to have TASM create a .p
file. The .p file is a "tape" file supported by a number of ZX81 emulators. After compilation (or cross
assembling), the .p file can be loaded into an emulator and run with the LOAD "" command. TASM can be
found at:

http://home.comcast.net/~tasm/

The Books

Years ago | had purchased two books on Assembly (or machine code). One left me horribly confused and
lost. The second one made sense and I was able to write a few programs. The second book was "Mastering
Machine Code on Your ZX81" by Toni Baker. I still have that book, but I wanted a digital copy to reading on
my laptop. Luckily the website, World of Spectrum, has this book, and many others, available. The link to
the books is:

ftp://ftp.worldofspectrum.org/pub/sinclair/books/

Here is a list of others books that you will find useful:

The Complete Timex TS1000 - Sinclair ZX81 ROM Disassembly
This has the full ZX81 ROM disassembly that details all of the ROM routines.
7.X81 Basic Programming

This is the standard book that came with the ZX81 computer. You don't need it for BASIC, but it does cover
the layout of memory, the screen, the characters, system variables, and so on. A good reference to have.

7.80 Assembly Language Programming

This book lists all of the possible opcodes for the Z80. Some opcodes that you think should exist, but they
may not, so this book will detail the real opcodes, allowing you to workaround any limitations.

I would recommend downloading at least these books. I've found myself using all four of them. The Toni
Baker book (even with some errors) is very useful. An updated version is available in HTML format at:

http://www.users.waitrose.com/~thunor/mmcoyzx81l/index.html

There are a number of other ZX81 books at the above FTP site. Most of them deal with ZX81 Basic but you
might find them interesting (and the price is right).

The Editor

When editing source code, built-in Notepad is decent, but it lacks a number of bells and whistles. One thing
that I wanted was a way to convert characters to upper case. I like my assembly programs to have the
opcodes in upper case, but I find it a pain to type it that way. I prefer to type in lower case and go back later
to change it.

B AT Emulation'exs 1iasm 7 \print 16, aom - Hatapads=+

Looking around for Open Source text editors, I found

Notepad++. Notepad++ is an updated version of . s el e Sula® AL IF G R
Notepad (mostly in name and function) that has a — ' -
number of features for programming. It does have the d

upper case conversion command (CTRL-SHIFT-U). .

It also has text highlighting for Assembly. It -

remembers indentation and automatically indents for
you. It has tabs so that you can edit more than one
file at a time. It can be found at: notepad-plus-
plus.org

RET

length ; 345 lnas: 76 bn:l Calil 50 Coow imadors L) T

Part Two - The Basics

Getting Started

To start working in machine code, you will need to get the above tools and have them installed on your
computer. ['ve created a directory called 'zx81' and installed both EightyOne and TASM in their own
subdirectories. I've created a subdirectory called 'docs' and stored the PDF documents mentioned above.
Any programs that [write are stored in the TASM directory so that they can be found by TASM.

TASM and the ZX81

TASM is a cross compiler for a number of CPU's. It supports the Z80 but it is not specifically designed to
support the ZX81. A number of header and footer files have been created to get TASM to work with the
7ZX81. The templates are:

lineO.asm
linel.asm
main.asm
sysvars.asm
charcode.asm

1ineO.asm sets up the line of BASIC with the REM statement to hold the machine code program.
linel.asm sets up the RAND USR call to start the machine code program. main.asm is the main part
of the program and it is where you will insert your code. sysvars.asm had a number of defines for
variables and ROM routines specific to the ZX81. charcode.asmis a listing of the ZX81 character codes
that have been defined as a set of constants. Instead of having to type $31 for the L character, it is referenced
as L.

A Short Assembly Program

Here is a short example assembly program. The program will print out 36 characters of the ZX81 character
set, starting at character 1 (character 0 is SPACE and will not show up).

LD A,l ; start with 1
loop ; label used for jump
RST $10 ; PRINT
INC A ; increment A
CPp 36 ; stop at 36
JP NZ, loop ; 1f not 36, then goto/jump to LOOP
RET ; Return to BASIC

Here is the program in BASIC:

10 LET A =1
20 PRINT CHRS (A)

30 LET A = A + 1
40 IF A <> 36 THEN GOTO 20
50 STOP

In the main.asm file, it shows you
were the put your code. Type to above
machine code program into the file,
editing out the example code already
in the file, and save the file. The next
step is to execute TASM and have it
compile the program. TASM is
command line driven, so you will need
to open a DOS command line to run it
(Start -> Run -> cmd). The command
to run TASM is:

tasm -80 -b -s main.asm test.p

The command line options are:

-80 - Convert to Z80

-b - Produce binary file

- - Write a symbol table file
main.asm - The source code to compile
test.p - The resultant binary file.

e CAWINDOWS system 3 2\cmd. exe

TASM will take the main.asm file, cross assemble it, and create the file test.p. You can copy the file
main.asm to something else, so that you don't confuse which main.asm is for which project. Since

TASM was written for MS-DOS, it still only
understands the 8.3 DOS name scheme, so keep your
file names to 8 characters or less.

For those with Intel systems but not using MS
Windows, TASM should run fine under DOS-Box, the
MS-DOS emulator for a number of x86 operating
systems. The resultant .p file should run with most of
the emulators for other operating systems.

Now, we need to test the compiled code in the ZX81
emulator. Start Eightyone by double clicking on
eightyone.exe. The default setting is for the
7X81, so you don't have to make any changes to

Eightyone. On the toolbar, click on File -> Open Tape.

Use the menu to navigate to where test.p file is
located and select test.p. The ZX81 will look like

Fie vVew COsntrsl Opbord Toss Hele

L M E: T() s (md=%", ,.0123

Bs1

it has reset. It will then autotype the LOAD command, load the program, and RUN it. The next thing you

should see is 36 characters on the screen.

PRINT and PRINT AT

In the above example the command rst $10 is used to call the PRINT routine in the ZX81 ROM, but it is
also possible to use the CALL opcode and make a call to the PRINT routine. In this example, PRINT has
been defined in the header file as $10, which is the location in the ROM for PRINT. The routine takes the
value in the A register and prints it to the next location on the screen:

LD A,s08 ; grey square character
CALL PRINT ; print character

To use the PRINT AT feature of BASIC, a call must be made to the PRINT AT ROM routine before calling
PRINT. This routine moves the next print location specified by the B and C Registers. B is Row and C is
Column. In this example, 16 is being loaded into both registers, then PRINTAT is being called. This sets the
next print position to row 16, column 16. Then the code above can be used to print a character.

LD B,16
LD C,16
CALL PRINTAT ; set cursor to position 16,16

The full program can be found in printat.asm.

Printing Hex Values

So far, we've only looked at printing single characters on the screen. What would it take to print a number to
the screen? For hexadecimal, this is fairly simple to do. A hexadecimal number will always have two digits.
If the value is lower than 16 decimal, then it will have a leading zero. So, looking at a hexadecimal number,
$FF, or $06, each digit takes up half of the 8-bit byte, TR
or a single nibble (4 bits). It is necessary to isolate each | v covd oo rece roe
nibble and determine what number it is. Once it is
isolated, the value 28 (or $1C) is added to the number 18 ED FF
to reflect the right ZX81 character. The ZX81
character 28 is the same as zero.

The left digit needs to be printed out first, so to isolate
it, the carry bit is zero'd out and the number is right
shifted to move all of the bits over. Having the carry
bit zero'd out means that the bits coming into the
register will be zero.

To get the right digit, a mask is used to get rid of the @1
left 4 bits. The mask is ANDed with the register,
turning the 4 left bits to zero.

16k DAl Sk

Here is the program to test printing hexadecimal numbers with the main point being implemented as a
subroutine.

LD A,S$16
CALL hprint

LD A,S$CD
CALL hprint
LD A, SFF
CALL hprint

RET
hprint PUSH AF ;store the original value of A for later
AND S$FO ; isolate the first digit
RRA
RRA
RRA
RRA
ADD A, S$1C ; add 28 to the character code
CALL PRINT ;
POP AF ; retrieve original value of A
AND S$OF ; isolate the second digit
ADD A, S$1C ; add 28 to the character code

CALL PRINT

LD A, S$00

CALL PRINT ; print a space character
RET

Constants
The use of constants is a way to use a number through out a program, but to define it in one location, so that
if it has to change, it only needs to be changed once. Putting constants through out a program as literals, is
called "hard coding" and a bad idea.
With TASM, there is a way to define a constant. Let's say that you want to use a graphics character in a
program. You first want to use the grey square, which has a character code of 8 or $08. This character
constant can be defined in this way:

SQUARE .equ $08

And when you want to print that character, it would be done like this:

LD A, SQUARE
CALL PRINT

Later, if you decide to change from the grey square to a black square, you only need to change the constant
and your whole program will be updated and use the black square ($80).
Hello World

One of the first programs written for any language is one that print out the phrase "Hello World". In BASIC,
this is a single line program:

10 PRINT "HELLO WORLD"

For assembly, it is a little more complicated. First, the
tring "HELLO WORLD" has to be stored somewhere.
With TASM, we can use the . byte directive to
define a number of bytes. The label "1ine:" is used
o define where the string starts. Normally, the bytes
are listed in decimal or hexidecimal, but with the
defines created in sysvar.asm, the H sequence
has been assigned to the value of the letter H. This is
also done with the other letters. To know where the
end of the string is, the byte $FF has been put at the
end.

The program loads the location of "1ine" into HL.

Then the character at HL is stored in A. A comparison
s made to see if the end of the string has been reached.
If not, then the character is printed, HL is incremented

- Eightyling

Fie View Conired Opbons Took Hep

HELLO WORLD

Brs1l

= DOl s

o move to the next character and the program loops back.

hello.asm:

LD HL, line
pline LD A, (HL)
CP Sff
JP Z,end ;1f so,
CALL PRINT
INC HL
JP pline
end RET ;exit
line: .byte H,
Plotting

Printing is the most common way to get output to the screen. Another way is to plot points on the screen.
The ROM routine PLOT is used to plot a point on the screen. To plot a point at X,Y, Y has to be loaded in to
the B Register and X into the C register. The T-ADDR system variable is used by the PLOT routine, so you
must preserve it (by PUSHing it) before you call PLOT and restore it afterwords. This is a fair bit of code
just to plot a point, so it would be best to put most of the code into a subroutine and reuse it. See the next

section for a discussion on subroutines.

LD B, 10 ;
LD C,10 ;
LD HL, ($4030) ;
PUSH HL

LD A, $98

LD ($4030) ,A

CALL PLOT

;load HL with address of line
;load A with a character at HL
;The end of the string?

then jump to end

;print character
;increment HL to get to next character
;jump to beginning of loop

H, E, L, L, 0,800, W, O, R, L, D,S$ff

Store Y in B

Store X in C

Get T-ADDR

; SAVE T-ADDR

;Less than $9E to plot

POP HL
LD ($4030) , HL
RET

; RESTORE T-ADDR

Part Three - More Advanced Programming

Reading the Keyboard

So far, we've discussed output, now it is time to talk about getting some input. There are two ROM routines
used to get input from the keyboard. The first is KEYBOARD or KSCAN. This routine scans the keyboard
for a pressed key and returns the key defined by vertical and horizontal keyboard section. See Toni Bakers'
book, page 88-89, for a discussion on the hardware. The value, returned in HL, does not mean anything to
us, so we have to use another routine DECODE or FINDCHAR, to convert that hardware value into a
character code. The DECODE routine wants the hardware code to be in HL and it returns the key code in A.

This example program scans the keyboard, translates the results to a character code, and then prints out the
character code to the screen. The keyboard scanning routine is so fast, that a delay is put into the program,
else too many characters will appear for each keystroke.

type.asm:

wait

delay

end

CALL
LD
LD
LD
INC
LD
JR
CALL
LD
CP
JR
CALL
LD
DEC
LD
OR
JR

JP wait

RET

KSCAN
B, H

14

L
, C

> O g N

;1
Z,wait
FINDCHAR
A, (HL)
$18
Z,end
PRINT
BC,$1200
BC

A,B

C
NZ,delay

; get a key from the keyboard

; If no key entered

; then loop

;Translate keyboard result to character
; Put results into reg a

; Is character a / (slash)

; If so, jump to END

; Print character

; Set pause to $1200

; Pause routine

PAUSE, SCROLL, and CLS

There are a couple of more ROM routines that are handy and fairly easy to use. The PAUSE routine works
the same way as the BASIC command. The length of the PAUSE (in number of FRAMES) is stored in the

FRAMES system variable and a call is made to the PAUSE ROM routine. Like the PAUSE in BASIC,
hitting any key will stop the PAUSE and continue with the program.

LD HL, SFFFF ; how long to pause
LD (FRAMES) , HL ; store it in FRAMES
CALL PAUSE ;call the PAUSE routine

SCROLL is also the same as in BASIC. The routine will scroll up the screen one row of characters. The
routine does not need any arguments and is done with a simple CALL:

CALL SCROLL

Another ROM routine that is the same in BASIC is CLS, or clear screen. It fulls the screen with space
characters. With an expanded system, it also makes sure that the screen is fully expanded and 793 bytes long.

CALL CLS

Writing Directly to the Screen

= | O] %
The built in PRINT ROM calls can be a little on the T CRON - T T

slow side. For faster printing, it is possible to send
bytes directly to screen memory. The data can be a
simple string or it can be a full screenshot. Before
writing directly to the screen, you need to perform a
CLS. This expands the screen to it's full size. I've
tried the program without the CLS and it will not work.

In this example, the grey square character is printed to
the entire screen. HL is loaded with the pointer to the
location of the screen. The program then goes through

a loop 22 times, copying the grey square character Ll
code to the screen.
e Tul] Hpe

CALL CLS

1d hl, (D FILE) ; Get start of display

1d c,22 ; line counter (22 lines)
LOOP1 inc hl ; get past EOL

1d b, 32 ; character counter (32 rows)
LOOP2 1d (HL), $08 ; print grey square character

inc hl ; move to next print position

djnz LOOP2 ; Do it again until B=0

dec ¢ ; next line

JR nz,LOOP1
DONE RET ; exit

The next program writes a string directly to the screen. It functions the same as the one above except that the
data written to the screen is read from a data section. It is possible to modify this program to read in a whole
screen from a data section and output it to the screen. Make sure to remember that at the end of every line on
the screen is an EOL marker ($76). Either have it as part of the data section, or make sure to jump over the
existing EOL marker and move to the next line.

CALL CLS
LD HL, (D_FILE) ; Get start of display
LD DE, screen ; Get start of string
inc hl ; get past first EOL
loop LD A, (DE)
CPp SFF
JP Z,done
LD (HL) , A ; print character stored in A
INC HL ; move to next print position
INC DE ; move to next character in string
JPp loop
done RET ; exit

screen:

.byte H, E, L, L, 0,$00, W, O, R, L, D,SFF

See screen3.asm for an example of loading an entire screen from data statements to the screen. It is possible
to store a number of screens in .byte arrays and load them when needed. Each screen is 793 byes long. It
functions the same as the program above except that the data section hold a whole screen worth of data and
not just a string.

ZXpaintyOne

While on the subject of loading screens,
there is a neat JavaScript program that let's
you create ZX81 screens with graphics
characters. It loads into a web browser
and provides mouse-driven way to draw
screens. It only supports the graphics
characters and does not allow for adding

Preview at 1al

lnad/save

Save | Load | Ewpot |

ext. Once the screen is drawn, "saving" it o

creates a long binary description of the P

characters of the screen. To make the ey
[mage e

program more compatible with assembly .
programs, there are two changes that need W8 e e s

. . E=
o be made. The JavaScript is a text =

HTML file, so it can easily be edited in Notepad++ (which does show line numbers).

1. Insert this as line 265:
if (x == 62) savedata +=",$'

2. Insert this as line 257:
savedata +="\n$'

This will put a § in front of each character to define it as hexadecimal and it will insert commas between the
numbers. ZXpaintyOne can be found at the following location:

matt.west.co.tt/demoscene/zxpaintyone/

Using Variables with TASM

The Z80 registers are limited and they can change when calling ROM routines or when using certain
opcodes. There needs to be a way to keep data around so that it can be used in all different parts of the
program. The solution is to define parts of memory as locations and used like variables.

Variables are defined with the .byte directive.:

X pOSs .byte 16
Yy pos .byte 16

This defines two variables and sets both of them to the default value of 16.

To load the variable into the A register, indirect addressing is used. To put x_pos into the B register and
y_pos into the A register, do the following:

LD A, (x_pos)
LD B,A
LD A, (y pos)

Saving data back into the variable is basically the same indirect addressing:

LD (x_pos) ,A
LD (y_pos),A
Subroutines

Subroutines are parts of the program that will be called multiple times from different locations. Subroutines
are also another way to break up the program into smaller chunks. Given the structure of Assembly language,
subroutines function very similar to the GOSUB in BASIC. Subroutines are normally located at the end of
main program, similar to BASIC.

This example program moves a character around the screen based on keyboard input from the user. The code
for handling each direction (up, down, left, and right) are implemented as subroutines. This program also
shows how variables are used.

movechar.asm:

.byte
.byte

X _pos
Yy _pos

START LD
LD
LD
LD
CALL
LD
CALL
CALL
LD
LD
LD
INC
LD
JR
CALL
LD
CPp
JP
CPp
JP
CPp
JP
CPp
JP
CPp
JP
JP

WATIT

LEFT LD
LD
LD
LD
CALL
LD
CALL
LD
DEC
LD
JP

7, RIGHT
$26

7, DONE
WAIT

;Get starting location of Char

; set cusor to position 16,16
; grey square character

; print character

; ROM call to read keyboard

; Get output from HL

; and put into B and C

; ROM routine to get character
; Get results of DECODE

; b or

; 6 or

LEFT key
DOWN key
UP key

RIGHT key

zero key

(use to Quit)

; print space at x pos,y pos

; get x pos
; decrement it
; store x pos

RIGHT

UP

DOWN

PAUSE1L
DELAY

DONE

LD
LD
LD
LD
CALL
LD
CALL PRINT
LD
INC
LD
JP

LD
LD
LD
LD
CALL
LD
CALL PRINT
LD
DEC
LD
JP

LD
LD
LD
LD
CALL
LD
CALL
LD
INC
LD

LD
DEC
LD
OR
JR
JP

RET

BC, $1200
BC

A,B

C

NZ, DELAY
START

print space at x pos,y pos

get x pos
increment it
store x pos

print space at x pos,y pos

get y pos
increment it
store y pos

print space at x pos,y pos

get y pos
increment it
store y pos

Set pause to $1200
Pause routine

loop until O

Return to BASIC

Multiplication and Division

Addition and subtraction are built into the Z80, but the programmer has to implement multiplication and
subtraction. Both of the approaches below for multiplication and division use the brute force approach and
should be fine for smaller numbers.

The simplest form of multiplication is shifting the register to the left. This is the same as multiplying by 2.
For division, shifting to the right is the same as dividing by two. If you are multiplying or dividing by two,
then use this method.

Multiplication

The brute force approach to multiplication is iterative addition. Meaning that a number is added to itself, X
number of times. To get 3 X 5, then the number 3 is added to itself, 5 times (or vice versa). The code below
does just that. One operand is loaded into B and the other into C. It is the operand in C that is added to itself,
so it should be the larger operand. This will save the number of cycles it takes to calculate the answer. Since
any number multiplied by 0 is 0, the routine below first sets the result in HL to 0, then checks to see if either
B or Cis 0. If so, then it returns with HL set to 0.

LD B,X
ID C,X
multiply:
LD HL, O ; zero out HL
ID A,B
CP 0 ; Is B zero?
RET 7 ; If so, return and HL=0
ID A,C
CP 0 ; Is C zero?
RET 7 ; If so, return and HL=0
LD D,0 ; Zero out D
LD E,C ; load C in E
loop:
ADD HL,DE
DJNZ loop
RET ; result is in HL
Division

The brute force approach to division is iterative subtraction until subtraction is no longer possible. In the
code below, the operation is this: B=HL/E. E is subtracted from HL until E is less than HL. Any remainder
is ignored, so the result is the same as INT(HL/E).

divide:
ID A,E
CP 0
RET 2
ID B,O0

ID D,0

loop:
SBC HL,DE
INC B
JR NC, loop
DEC B

The end result is in the B register.

Arrays

Arrays are a very common way to store data in a program. The two most common types of arrays are single
and two dimensional. A single dimension array is comprised of a single row with lots of elements, with each
element being referenced by a number. With an array name of bob, the 3rd element of the array is referenced
as bob(3). A two dimensional array is an array composed of both rows and columns. Most of the time, a two
dimensional array is also called a table. The reference a single element of a two dimensional array, two
numbers are needed. For the array named bob, the element at column 3 row 4, is referenced as bob(3,4).

In reality, all arrays are single dimensional, since computer memory is a long row of memory locations
accessed by the address. But, with a little math, it is possible to let the one dimensional memory look like a
two dimensional array.

Single Dimension

In a single dimensional array, referencing the Nth element of the array is very easy, but not as trivial as one
might think. The array is first defined in the program with a label and the .byte directive:

array: .byte 0,0,0,0,0,0,0,0

This defines array as a single array with 8 elements. The first element is at the memory location of array, and
the second one at array+1. So, Nth element of the array is not array+N, but array+N-1. In the example
program, the element that is needed is the 4th (the letter D) and it will be printed to the screen.

LD BC,4

DEC BC

LD HL, (array)
ADD HL,BC

LD A, (HL)
CALL PRINT

RET

array .byte A, B, C, D, E, F, G
Two Dimension
A little math is needed to simulate a two dimensional array in a single dimensional memory system. To

determine the location in the array (translating from a 2D array to a 1D array), the following formula is used:
(X-1)*array_sizet+y-1

The formula is designed for starting an array index at 1 and not zero. In the example below, the element that
we are seeking is array[3,3]. The array is 4x4 or 4 rows of 4 elements. In the program below, the translation
of 2D to 1D is accomplished and the letter K will be printed to the screen.

LD B,3 ; X into B
DEC B ;o (x=1)
LD C,col
multiply: ; (x-1)*col
LD HL, O ; zero out HL
ID A,B
CP 0 ; Is B zero?
RET 7 ; If so, return and HL=0
LD A,C
CP 0 ; Is C zero?
RET 7 ; If so, return and HL=0
LD D,0 ; Zero out D
LD E,C ; load C in E
loop:
ADD HL,DE ; add DE to HL, B times
DJNZ loop
; X * col is now in HL
LD DE, 3 ; Y into DE
DEC DE ;0 (Y=-1)
ADD HL, DE ; add result of multiplication and (Y-1)
LD DE,array ; Get start of array
ADD HL,DE ; add offset to array
LD A, (HL)
CALL PRINT
RET
array .byte A, B, C, D
.byte E, F, G, H
.byte I, J, K, L
.byte M, N, O, P

Memory Management

In other computer languages there are ways to ask the operating system for checks of memory. Most
languages have a command like malloc in C, and RESPR in QL SuperBasic. With Assembly, there are no
operating system call, and on the ZX81 there are no ROM routines for allocating memory.

So, if you need a chunk of memory, the you have to determine where you will get the memory from. With
the ZX81, the system has specific locations in memory already allocated. Starting at 16K, the first bit if
memory is the system variables, then the program area, then the screen (display file), then BASIC variables,
then the calculator stack. From the calculator stack, until and the GOSUB stack (ERR_SP), is a large chuck

of free memory. In doing some looking at the system, I found that most of the time that ERR _SP was set at
32764, which is just under memory location $8000 in hex.

If you look at memory in "thousands" in Hex, $4000 is 16384, which is the start of RAM for a 16K system.
The next "thousands" are:

$5000 20480
$6000 24576
$7000 28672
$8000 32768

Notice that the difference in these "thousand" memory locations is 4K. Depending on how much memory you
need and how large your program is, is it very likely that memory located at either $6000 or $7000 is going to
be free and available.

For smaller chunks of memory, TASM supports the .block directive. This functions simaraly to the .byte
directive, except that it is for more than a byte and values to not have to be assigned to the block of memory.

Usage is like this: mem_chunk .block 30

This assigns a block of 30 bytes referenced by the name "mem_chunk". These bytes are allocated in the
Program Area of memory, just like the assembly program itself.

TASM Notation

Different assemblers have different notation for directives, such as defining a byte or word, defining
constants, etc. TASM uses a rather unique dotted notation with a dot before each notation. This might have
roots in the Unix utility roff, because with TASM, some of the dot notations are also commands for printing.

Here is an example of a notation commonly seen with other assemblers:

VERSN: DEFB O
E PPC: DEFW 2

KEYBOARD EQU $02BB
DECODE EQU $07BD

If you have an assembly program in this notation, instead of having to edit the program, setting up some
defines in TASM will allow this program to work with TASM. Here are some example defines that will
allow this notation to compile just fine with TASM.

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define ORG .ORG
#define EQU .EQU

Every time TASM sees DEFB it will replace it with . byte, which TASM understands.

Assembly Coding Conventions

When writing code in any language, it is good to create coding conventions that you use through your
programs. These conventions are some simple formatting rules that will make the programs easier to read
and understand. Here are a number of my coding conventions:

CALL Labels
ROM calls - Upper case
Local Calls - lower case

By using upper case for ROM calls and lower case for calls to local routines, it will be easier to determine
exactly where the call is going.

Variable Labels
System Variables - Upper case
Local Variables - lower case

By using uppercase for system variables and lower case for local variables, it will be easier to determine
which type of variable is being used.

Appendix I - Rom Calls

This appendix lists a number of useful ROM calls. The names are those used in the ZX81 ROM Disassembly
book by Dr. Ian Logan. Alternate names are used, mostly from the book "Mastering Machine Code for the
7ZX81" by Toni Baker.

CLS S0A2A
Clears the screen.

CALL CLS

DECODE $07BD

Takes the output from KEYBOARD and converts it into a character code. Output from KEYBOARD must
be in the BC register pair. A ponter to the character code is returned in the HL register pair. From there it can
be loaded into the A register. Alternate name; FINDCHAR

CALL KEYBOARD
LD B,H

D C,L

CALL DECODE
LD A, (HL)

FAST $0F23
Switches the display to FAST mode.

CALL FAST

KEYBOARD $02BB
Scans the keyboard and returns the horizontal and vertical section for any key that is pressed. Results are
returned in HL register pair. Alternate name; KSCAN. See DECODE for example code.

PAUSE $0F35

Pauses for a defined period of time. If a key is hit during this time, it will end the pause. The length of the
pause is a 16 bit number loaded into the BC registers. This value should not be greater than 32767. Time is in
frames; 50 frames a second for European system and 60 frames a second for US systems. For emulators,
check their documentation for how many frames they implement.

LD BC, $0200
CALL PAUSE

PLOT / UNPLOT $0BB2

Plots a point on the screen. The Y value is loaded in the B register and the X value in the C register. The
contents of the system variable T ADDR determines if a PLOT or UNPLOT is done. If T ADDR is less
than $9E, then PLOT is performed. If a is $9E or greater, the UNPLOT is performed. T _ADDR must be
saved before it is changed and restored after PLOT is called.

LD B,11

LD C,11

LD HL, (T_ADDR) ;T _ADDR = $4030

PUSH HL ; SAVE T-ADDR

LD A,$98

LD (T_ADDR) , A

CALL PLOT

POP HL

LD (T_ADDR) , HL ; RESTORE T-ADDR
PRINT $0010

Prints the character to the screen that is stored in the A register. Prints the character at the next print location.
Row position is loaded into the B register and Column position is loaded into the C register.

LD A, XX
CALL PRINT
PRINTAT $08F5

Moves the print position. Row position is loaded into the B register and Column position is loaded into the C
register.

LD B,$10
LD C,S10
CALL PRINTAT

SCROLL $SO0COE
Scrolls the screen up one line.

CALL SCROLL

SLOW $O0F2B
Switches the display to SLOW mode.

CALL SLOW

arrayld.asm
array2d.asm
divide.asm
hello.asm
hexprt.asm
movechar.asm
multiply.asm
pause.asm
plot.asm
print.asm
printat.asm
rnd.asm
screenl.asm
screen?.asm
scroll.asm
type.asm

Appendix 11
Included Example Programs

test of 1 dim array
test of 2 dim array
test of division

Hello World

print hex number
Keyboard input, PRINT AT
test of mulitplication
Testing PAUSE call
PLOT and UNPLOT

PRINT

PRINT AT

Simple random number generator

Write directly to screen

Write directly to screen with string

Testing SCROLL call
Keyboard input

