Using MCODER?2

By Timothy Swenson
1. Introduction

MCODER? is the primary compiler for Sinclair BASIC on the ZX81, written by David C. Threlfall in
1983 and published by Personal Software Services (PSS). David Threlfall went on to do a number of
BASIC compilers for the Spectrum. MCODER? is available from a number of sources on the Internet,

including this link: http://www.zx81.de/english/soft e.htm

How MCODER?2 works is like this; MCODER?2 is loaded into memory, then the BASIC program is
loaded (meaning the code that is to be compiled), the compilation process takes place, and the compiled
code can be saved.

These days most ZX81 development is done with emulators, such as EightyOne for Windows or SZ81
for Linux. The code is written using text editors of the host OS. A utility, zxtext2p, is used to convert
the code to a ZX81 binary file (.P) so that it can be loaded into an emulator and run.

The goal of this paper is the describe the process of using programs from zxtext2p and produce a
compile version through MCODER?2. I am not an expert on MCODER?2, I have worked with it and
decided to document the process. I have incorporated comments from others that have also used
MCODER?2. Some parts of this document are going to be conjecture about how MCODER?2 works.

2. Getting Started

This section is a quick run down of what it takes to compile a BASIC program. It is assumed that the
program has been written,tested, and saved as a .P file. The program could have been written directly
into the emulator or through a tool like zxtext2p.

1. Load the MCODERZ2.P file into the emulator. Once MCODER? starts, it will tell you to hit any key
to continue. For opening screens of MCODER?2, see imagel and 2, below:

M CcCobDbER =

ANY KEY TO START

MCODER _EXTRACTED AEOVE RAMTOR.TO
HERGE_IWTO AW EXISTIMNG PROGRAM
LOAC THE FROGRAM _AMD TYFE: -

LET L=USR 32462

(Image 1) (Image 2)
2. Load your BASIC program from a .P file.

Be sure to use the load option that does not do a hard reset of the emulator. For EightyOne and
ZX81, use the LOAD “” command and not the GUI to start the load process.

http://www.zx81.de/english/soft_e.htm

3. Enter “LET L=USR 32462”

This will load the REM statements needed by MCODER?2 to the beginning of your code. If
your program already has a line number 1 through 3, they will not be touched and a new line 1 to 3 will
be added. I’m not sure how MCODER2 does this, but it does (see Image 3).

REM_STRMD FAST GFTRMDT7T7 w7
??°?°m???°?° FSEN B GOSUE TETRND
FOR Em RMD77%7 FOR ETRND GOSUE 7
FRND GOSUE [MITAN LN _SCROLL _SSURN
CACS WIF FAST Ew RHNDT?7 LPRINT FA
ST LALLM BhEn RND??FIT SEM GOSUE
AN _TRND .J!IJ °'.? Fo

R HoZlE®: For FlBS i

HDD ITI]
CDPYRIGHT 1983 THRELFALL
COMRILER 17388 PRDG AT zZe58@
1EPRINT "TES
”TEST“
3 PRINT "TE "
4 PRIMNT ”TEST“
S PRIWNT "TEST"

4

(Image 3)
4. Enter “LET L=USR 17300~

This will start the compile process for your code. MCODER? will list the lines of the program
as it compiles and if there is an error, it will highlight the error with an inverse S next to the command
it has problems with. The program can then be modified and the compilation process started again.
The program is listed three times, it looks like MCODER? is a three pass compiler. The compilation
process is shown in image 4, below:

INT "HELLO WORLD"™

PRINT "HELLO WORLD'"™
PRINT "HELLO WORLD'™

3
1
=]
2
3
i@

2@

3@ PRINT "HELLO WORLD"™
pi

@
2
3
ol
2
3
1
(I

INT "HELLO WORLD'"
INT "HELLO WORLD'™
INT "HELLO WORLD"™
) END AT 205295
RUN AT z2eSea

RUN 7

(Image 4)

5. Once the program is compiled, MCODER?2 will tell you the address in memory of your code. The
usual address is 20500.

6. Once the program is compiled, you will be given the option to run your code. MCODER?2 will ask
“RUN ?”. Enter Y or N to answer. If you entered Y, let your program continue until it ends, and then
continue to the next step. Image 5 shows the example program after it has run.

HELLO WORLD
HELLO WORLD
HELLO WORLD

E-a

(Image 5)

7. Enter “LET L=USR 17281”

This will delete the source BASIC program. Since the original code is no longer needed,
having it deleted from memory will free up more memory for the program to use.

8. Add the following line of BASIC:

10 LET L=USR 20500

This is how to start the compiled version of your code. When RUN is entered, this is the first
line that will be executed. The runtime routines for MCODER?2 are stored in the REM statements in
lines 1-3 and these will not be executed by BASIC.

9. Use the SAVE keyword to save your program (depending on the emulator you are using).

10. LOAD your program and test that when you enter RUN, that the compiled version runs fine.

3. MCODER?2 Definition

MCODER?2 does not support the full ZX BASIC command set and will only compile a subset of those
commands. These are also other limitations of MCODER?2, as documented below:

1. Integer Only
- Positive and negative values allowed. Negatives are preceded with a minus sign.

2. Arrays
- No string arrays.
- Only one dimensional numeric arrays.

3. For .. Next Loops
- Only STEP 1 is allowed.
- No negative steps.

4. Strings
- Maximum length of 32 characters.
- String slicing, A$(x TO y) allowed. A$ (TO x) or A$(x TO) is not allowed.

=2

(Example screenshots showing MCODER?2 flagging an error)

Keywords Supported:

AND, ABS, CHRS$, CLS, CLEAR, CODE, COPY, DIM, FAST, FOR, GOSUB, GOTO,
IF..THEN, INKEY$, INPUT, INT, LEN, LET, LPRINT, NEW, NEXT, OR, PAUSE,
PEEK, PLOT, POKE, PRINT, RAND, REM, RETURN, RND, SCROLL, SGN, SLOW,
SOR, STOP, TAB, UNPLOT, USR.

Notes on Keywords:

AND - Only allowed in IF statements.

DIM - Must have at least 2 times the array size in available bytes in spare memory.

FAST - Does not return to SLOW mode during INPUT or PAUSE.

FOR - Numbers must be less than 32767.

INPUT- Numbers can have leading negative sign. Strings limited to 31 characters.

LEN - No slicing of the string in the LEN statement.

OR - Only used in IF statements. [need to confirm]

PAUSE — PAUSE value must be positive and less than 32768. Pressing SHIFT-EDIT works

like the BREAK key.

REM - REM? Is a special code for MCODER?2. It checks to see if the SHIFT-EDIT key has
been hit and works like the BREAK key.

RETURN - Can be used in the middle of the program to exit and return to BASIC.

RND - Returns a number from 0 to 32767, which is different than the normal RND behavior.
To get the normal behavior of RND, use LET X = USR 16550.

STOP - Will stop compilation when found. Use LET L=USR 3292 as a STOP in the middle of
the program.

4. Limitations

MCODER?2 has a number of limitations, all listed above. Instead of letting those limitations inhibit
your code, it is possible to find workarounds for a number of these limitations.

Two Dimensional Arrays
A number of other languages do not support two dimensional arrays, including the popular Small-C
compiler (from which Z88DK comes from). It is fairly simple to utilize a one dimensional array and
treat it as having two dimensions.
A two dimensional array is addressed by the variables, such as x and y, in this manner:
LET a = B[X,Y]
To address a one dimensional array in the same manner, use the following:
LET a = B[X*MAX X+y)
Where MAX_X is the x dimension for the two dimensional array. If an array is defined as:

DIM B[20,10]

Then MAX_X is 20, and the one dimensional array is defined at 20x10 or B[200].
VAL

The VAL keyword is not allowed by MCODER2. VAL converts a string to a number, or more
generally, it treats a string as an arithmetic expression and evaluates it. In most cases, VAL is used to
just convert a string to a number. If the string is comprised of a single character, then converting it to a
number is a fairly simple process.

print "input a number"
input a$

print a$

gosub @vall

print "answer is :";

if BB = -1 then print "error"
if BB <> -1 then print BB
return

@vall:

let AA = code AS

let BB = AA - 28
if AA < 28 then let BB = -1
if AA > 37 then let BB = -1
return

STRS

The STR$ keyword is not allowed by MCODER?2. STRS$ converts a number to a string. This can be
implemented in BASIC with a short routine.

let num = 12345

let as$ = ""

let x =5

print "number is : ";num

@loop:
let y = 10 ** (x-1)
let CC = 10

for d =1 to x-2
let CC = CC * 10

next d

let y = CC

print y

let z = int(num/y)

if z = 0 then goto @jump

let a$ = a$+chr$(z+28)
let num = num - int(z * y)
@jump:
let x = x -1
if x >0 then goto @loop

print "string is : ";a$
Power

The power function (**) is not allowed by MCODER?2. The power function takes a number (x) and
raises it to the power of another number (y) and respresented by the expression x**y (or x\y). In the
case where Y is 2, then X*X will do. For values greater than 2, then the routine below will provide the
functionality of power.

print "input number"
input AA

print AA

print "input exponent"
input BB

print BB

gosub @power

print "result is ";
print CC

#stop
let l=usr 3292

@power:

let CC = AA

if BB = 0 then goto @pjmpl

for x = 1 to BB-1
let CC = CcC * AA
print CC

next x

return

@pjmpl:
let CC =1

return

Non-Integers

It is possible to implement a form of floating point numbers, by shifting the decimal point on all of the
numbers and keeping track of where the decimal point should be. In this situation, the numbers are
integers, but, by convention, they are treated as floating point and printed out as floating point. With
true floating point, the location of the decimal would change per number. This would be hard to track,
so a simpler implementation is to set each number with a defined decimal point (ie. 2 decimal points

for each number). Technically this is not floating point, but one can use the term “floating point” to
mean numbers with a decimal point, or the more accurate but less term, non-integer.

With this implementation, each number is considered to have 2 decimal places, and then be multiplied
by 100 to get an integer. The number 3.14 would be stored as 314. The number 276 is really 2.76. The
number 1 is 100. With the numbers stored as integers, they can be run through all of the math
functions. Once through a function, the decimal point needs to be re-adjusted, depending on the
mathematical operation that was performed. Below is the adjustment for each operation:

Add Nothing

Subtract Nothing

Multiply Divide result by 100
Divide Multiply result by 100

Here is an example:
3.14x 1.76 = 5.5264 314 x 176 = 55264

To get the end if the first equation is 5.5264. Truncate it to 2 decimal points and it would be 5.52, then
convert to our integer convention and it becomes 522. In the second equation the result is 55264.
Divide by 100 and you get 522.64, then when truncated by the integer only math of MCODER?2, the
result is 552.

Remember that the maximum integer value that MCODER?2 can handle is 64K or 65535. MCODER2
stores variables in 2 bytes or 16-bits. This scheme can be adapted for only 1 decimal point, and one
would use 10 in place of the 100 listed above.

Using a number scheme like this may not be needed for every variable or number used in the program.

To keep track of which variables are using this convention, it is suggested that the variables start with a
unique letter, like F. So if using the variable A, and using this convention, the variable would be FA.

5. Cheat Sheet
This is a short list of all of the MCODER?2 USR calls:

LET L=USR 32462
- Load MCODER?2 into your program.

LET L=USR 17300
- Compile the program

LET L=USR 17281 (RAND USR 17281)
- Delete BASIC source code

LET L=USR 17287 (RAND USR 17287)
- Relocate compiled code in memory

LET L=USR 3292
- Used in place of STOP

LET X = USR 16550
- Normal behavior of RND

